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Abstract

This work is & general, nonlinear approach
{Smatl Gain Theorem) in stability analysis of two robot
manipulators with unstructured dynamic models. The
interaction between the robot and the environment is
s speclal case of the general analysis. This stability
condition confirms the simplified results Iin the
stabllity analysis of the Linearly treated robots.

The stability analysis has been Investigated using
unstructured models for dynamic behavior of robot
maniputators. This unified approach of modeling robot
dynamics Is expressed In terms of sensitivity
functions. It allows us to incorporate the dynemic
behavior of all the elements of a robot manlpulstor
(i.,e. actuators, sensors and the Llinks structural
compliance) In addition to the rigid body dynamics.

1. Introduction
One of the significant issues In robot motion

control Is the stability anatysis’' of the interaction
between two manipulators or of the manipulator and

the environment. Robotic deburring and grinding are
practical examples of the Interaction of the robot
with the environment (5). In this anatlysis, the
interaction between two robots will be anslyzed In
detail. We propose a unified approach to model the
dynamic behavior of a robot manipulator based on an
Input/output functional relationship. This unifled
approach of modeling robot dynemics allows us to
incorporate both the dynamic behavior of alil the
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elements of a robot manipulator end the rigld body
dynamics. We are looking for a dynsmic model that
can represent the complete dynamic behavior of any
robot in & very genersl form. We belleve that there
may be enough components In the robot arm so that
rigid body dynamics Is not sufficient for modeling. In
fact, in many hydraulic robots, the actuators and the
servovalves dynamics dominate the total dynamic
behavior of the robot.

We try to avold using structured dynemic models
such as first or second order transfer functions as
general representation of the dynamic behavior of
the components of the system (e.g. servovalves In the
hydraulic robots and the gesr stiffness In the
non-direct drive systems). Extending this Idea to
modeling the environment, we also svold using mess
and spring systems to describe the dynamic behavior
of the environment. These models are not general
and the stability analysis consequently results In
non-general aceademic conclusions (illusions).
References 9 and 10 conteln some basic Issues In
general dynamic model for the environment.

2. Dynamic Model of & Robot with Tracking
Coapabllity

We define an ideal tracking robot as that system
which: 1) Is able to follow all trajectories and, 2)
rejects oLl the disturbances under all circumstances.
The above two conditions can be integrated to define



an ideel tracking robot as a dynamical system which Is
sble to exactly follow any commanded trajectory as
long as It does not interact with an infinitely stiff
environment. Let us define the sensitlvity function as
8 mapping from the disturbances to the motion of the
robot. Thus the sensitivity function of an ideal
tracking manipulator always results in zero deviation
of the manlpulator's trajectory for sll bounded
disturbances. In the tinear domaln, one can consider a
robot with infinite bendwidth and zero sensitivity
transfer function matrix as an example of an ideal
robot. A physicel system with such characteristics is
modeled &as an Ideal source of flow (current
sourcel}(14). The dynamic behavior of an Ideal one
dimenslonal tracking robot can be represented by an
ideal current source as shown In Figure ta. i,1s an
enalogy of the commanded trajectory, while v, the
Imposed voltage, represents the imposed disturbance
or the force on the robot. An Ideal current source
provides a current, l,, which could be any arbitrary
time function but Independent of the magnitude of v.

Figure 1: ELectrical Model of a System with Tracking
Capablitity

In reality, no robot behaves as an Ideal tracking
robot. Robots can track only those arbitrary
trajectories and reject those disturbances that
contain components with bounded frequency ranges
and magnitudes. This Is from the Limitation in the
bandwlidths and the magnitude of the power of the
controlled systems. (Nolse reduction and robustness
to high frequency unmodeled dynamics are the
primary reasons for Llimitation of the controlled
systems' bandwidth [1,6)). We define these robots as
average tracking robots. To arrive at a scslar
model for a robot with average tracking capability,
we propose 8 Llimited bandwidth source of flow In
parallel with a nonlinear resistor (Figure 1b). The
sveilable current at the output, given by Equation 1,
is the algebraic addition of the current from the

resistor and the actual current genersted by the
source.

= Gerllg) = Sgrlv) (m

The mapping, Sy, represents the sensitivity of
the tracking system, while Gy represents the
dynamics of the source of flow. Sy is, in the general
case, any combination of Linear and/or nonlinear
electrical components [(e.g. resistors, inductors,
capaclitors). If & lLinear resistor Is being used, then
S¢=1/R where R Is the electrical resistance measured
In Ohms. I, represents the commanded current while
v represents the Interaction force which Is
determined by the Interacting system. Note that G{i,)
characterizes the actual current from the source of
flow which may be different from i,.

In the ideal model, the sctual current from the
source of flow Is e‘quéL ';o the commanded flow in the
current source. In a realistic model, however, the
Internal dynamics of the source of flow Is operating
on the commanded current to produce Gy (l,). In fact,
an ideal Linear tracking robot can mathematically be
defined &8s that system with Gy=I, and S¢=0, where n
Is the degree of freedom of the robot. For reslistic
models, Gy Is approximately equal to the identity
meapping only for some bounded frequency ranges. If
St Is such thet for any bounded vsalue of v, the
current In the resistor Is zero (Infinite R in the Linear
case), then only G {ly), the current from the source
of flow, will be available at the output. This indicates
that S, Is a measure of how "good" a tracking
system Is. On the other hand, & very small voltage
across the resistor will cause the system to deviate
from its trajectory If Sy has a "Large" amplification
(small R In the Linear case). Manipulators with' such
characteristics are defined as wesak tracking robots.
The rigorous definition from the stand point of the
nature of Sy for week tracking robots will be glven
Later.

We assume that Iy, | and, v, belong to any Banach
{[normed space) or Hilbert space (2) and Sy and Gy,
ere nonltinear operators that map the particular
space used onto itself. An Ideal tracking robot has a
zero gain for §; while the average tracking robot
posesses a finite galn for S¢.. [(The gain of an
operator is defined in Appendix A). The block diagram
In Figure 2 represents the dynamic behavior of the
system shown In Figure 1b.



Str ja-V.

Figure 2: Nonlinear Block Dlagram of a Multi-Degree
of Freedom Robot with Tracking Capabitity

Note that although the circult of Figure 1 Is
inadequate to represent a muiti-degree of freedom
robot, the block disagram of Figure 2 and equation t
are genersl enough to cover the nonlinear dynamic
behavior of the multi-degree of freedom robots with
tracking controllers. For multi-degree of freedom
robots, l,, I, v are vectors. Reference 11 describes
the dynamic behavior of an active end-effector with
the above method.

3. Dynamic Model of a Robot of a Robot
with Force Control Capability

Since the dynamic e&nalysis of a robot with
tracking capability Is the dual to the dynamic
analysis of a robot with force control capablility, we
will arrive at a dynamic model of the lLatter in o
fashion similar to the former. Using that reasoning, &
tracking robot cannot be viewed buried in an
infinitely stiff environment, a force control robot
cannot be viewed In & free [vacuum) environment. The
definition of force control for a robot Is meaningless
if the robot Is not constrained at least In one
direction. From here on after, "force control robot®,
implies the control of force In a space [in directions)
In which the robot is constrained; however the robot
may or may not be constrained In the remaining
directions [(12,13,20,21).

We define an /deal force control robot (ageain in
8 particular constreined space) as a system that: 1) is
able to follow sll commanded forces and, 2) rejects
all the 1tresjectory disturbances under all
circumstances. The above two conditlons can be
integrated to define an Ideal force control robot as
that system which is able to exactly follow all
commanded forces as Long as It Is not in a free
environment (an environment with zero stiffness). An
ideal force control robot will Impose the commanded
force even If the Interacting system [a robot or an
environment) Is "trying to escape from it". The idesl
force control robot cen spend any amount of power

in order to Impose the commanded force onto another
system. Again.one can think of a robot with Infinite
bandwidth and zero sensitivity as an Ideal force
control manipulator. The sensitivity, in this case, is
defined as & mapping from trajectory disturbances to
the contact forces. We model an Ideal force control
robot with a source of effort (e.g. a voltage source)
as shown In Figure 3e& {31). However, any realistic
model of & force control robot In 8 constrained space
has a non-zero sensitivity. These are defined as the
average force control robots. A proper model of a
one degree of freedom force control system in a
constrained direction Is proposed by Figure 3b.
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Figure 3: ELectrical Model of a System with Force
Control Capability

The constitutive equation of the model Is:

v = Gelve) + Sell) (2]

where 8¢ represents the sensitivity of the force
control system while Gy répresents the dynamics of
the source of effort. Although the circult of Figure 3
Is inadequate to simulate & multi-degree of freedom
robot, equation 2 Is general enough to cover the
nonlinear dynamic behavior of the multi-degree of
freedom force control capablility of a constrained
robot. As In the previous model, S¢is described by &
generslized resistance. In the linear case, 5S¢ Is
characterized wlith the resistance R. Gilv,) Is
prescribed by the source of effort while the current,
I Is determined by the interacting system. S¢ Is a
measure of how "good" the force controi system is.
The smaller the amplification of S¢ Is {the short
circuit In the Limiting case) the better the force
control capablility witl be. A robot with "good" force
control capability (smell R In the linear case) will
exert the commanded force onto the Interacting
system Independent of Its Imposed trajectory. An



ideal force control robot has a zero gain for S¢ while
the average force control robot posesses a finite
gain for S¢. (the gain of an operator Is defined In
Appendix A). A robot with poor force control
capablility (large R In the Linear case) needs a very
stiff environment (l.e. an environment that cannot be
moved) to follow the commanded force. Manlpulators
with such characteristics are defined as weak force
control robots. The rigorous definition for the weak
force control cepability from the stand point of
nsture of S¢ is glven in Section 6.2. The rigorous
definition from the stand point of the nature of Si
for weak tracking robots can be arrived a8t In &
similar fashion.

We assume that S¢eand Gf &re nonlinear
operators that map Banach spaces. The gain of the
operstor S¢ Is zero and non-zero finite scelers for
the ideal snd the average force control robots
respectively. The block diagram in Figure 4 shows a
realistic dynamic representation of a multivariable
nonlinear force control capability of a robot in a
constrained space vis the nonlinear operator domain.
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Figure 4: NonLinear Block Diagram of & Multi-Degree
of Freedom Force Control Capabllity of a Robot

4, Interaction of Two Robots
The objective Is to arrive at the stabliity

condition for the Interaction of two robot
manipulators. The stability criteria for the

Interaction of a robot manipulator and the
environment is & particuler case of this general
anatysis.

From & merely physical perspective, any two
Interacting robots must complement each other.
Along any of the directions in which the Interaction
takes place, If 8 robot's dynamic behavior Is governed
by an admittance, the other's dynamic behavior must
be governed by an impedance {3,4,7,8,10,11,15). The
impedance Is defined as an operator with a flow
variable [current, velocity) as its Input and an effort
variable (voltage,force) as its output. The admittance
is defined as an operator with an effort variable as

its Input and a flow varlable as Its output. Considering
two interacting robots, the tracking robot accepts a
flow f{trajectory) as a command and reftects an
effort (force) as the output (Impedance), while the
force control robot accepts an effort as & command
end reflects a flow as the output (admittance).

We start with the stability analysis of two
one-dimensional robots. The interacting robots are
denoted as the TR-robot (tracking robot} and the
F-robot (force control robot). Figure 5 represents
the analog clrcult for the Interaction of two
one-dimensional robot manipulators. '

Tracking Robot  Force Controt Robot

T

Figure 5: The Analogue Circult for the Interaction of
two Robots in a Particular Direction

The Linear time Invariant approach is first used
to arrive at stablility criteria of the interaction of the
two one-degree-of-freedom Lineariy-treated robots.
These concepts will then be extended, In Section 6, to
the nonlinear domsin for interactions that take place
along more than one degree of freedom. The
interaction between two robots In the nonlinear
operstor domain is represented In Figure 6. Note
that, elthough the circult of Figure 6 Is inadequate to
simulste the interaction of two multi-degree of
freedom robots, the block disgrem of Figure 6 Is
generel enough to cover the nonlinear dynamic
behavior of the Intersction of two multi-degree of
freedom robots.
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Figure 6: The Operator Diagram for the Interaction of
the Robots (Combination of Figures 3 and 4)



5. Interaction of two One-Degree-of-
Freedom Robots in the Linear Time
Invariant Domain

The obJective of this section is to show some
concepts on the intersction (In particular the stability
criteria) of two one-dimensional, Llinearly-trested
robot manipulators. The following analysis refers to
Figure 5 where 8ll the parameters of the cnui,og
circult are assumed to be Linear. The current, I,
represents the actual trejectory of the TR-robot
while the voltage, v, Is the actusal force exerted by
the F-robot. The expliclt relationships of | and v In
terms of the parameters of the circuit are given by
equations 3 and 4.

- e —————— (3)
Ry *+ Ry
[ Gfvo * Re Gir Io ) Rer
V- (4)
Re + Ry

Sections 5.1 and 5.2 describe the stability conditions
of two Linearly-treated one-degree-of-freedom
robots. Section 5.1 describes the stability analysis
when both robots are dynamically considered ldeal.
In Section 5.2 the stability of the Ideal tracking robot

with a8 weak force control robot will be Investigated.

5.1 Interaction of an Ideal TR-robot with
an Ideal F-robot

To simulate the Interaction between an Idesl
Linear TR-robot and an Iideal linear F-robot, we let
the value of Ry tend to iInfinity while that of Ry to
zero. [Ryr—o0 and R¢—0 imply zero sensitivity for
both robots.) Under {hese Limiting conditions, -the
current, |, and the voltage, v, tend to G¢,i, and Gsv,
respectively. Moreover, for Ideal robots, both G
and Gy are unity. Since | eand v are bounded values
{for a glven set of bounded I, and v, )}, the interaction
under these particular conditlons results In a very
stable overall system. While the ideal TR-robot
moves along the desired trsjectory, It will not
specify any bound on a possible interaction force. In
contrast, the ideal F-robot Imposes the desired force
onto the TR-robot without specifying any trejectory.
These two robots physically complement each other
and their Interaction is very stable.

5.2 Interaction of an Ideal TR-robot with
Weak F-robot

In this case the simulation Is accomplished by
letting the values of both Ry and Re tend to Infinity.
Rs—oo simulates an infinite sensitivity which implies &
poor force control property In the Llinear time
Invariant domain. It Is clesr that under these Limiting
conditions the voltage v approaches Infinity. While
the TR-robot tries to Impose the trajectory glven by
Its commanded Input onto the F-robot, the Latter will
hardiy be moved. Thus & very large force will be
generated during the intereaction. The F-robot has
tost sll Its force control capability, now having
tracking capabillty. In other words, the F-robot
resembles an Ideal source of current with zero
current (e.g. *Infinitely” stiff environment). The
interaction under these Limiting conditions approaches
the Interaction between two Ideal tracking robots.
These robots will not physically complement each
other; instabitity occurs and the contact force is

unbounded. The results of this stability analysis
confirms the results given In references; the

interaction of an Ideal tracking robot with en
Infinitely stiff environment results in an unstable

6. Interaction of the Robots in the
Nonlinear Domain

The model of the Interaction of two robots Is
represented by Figure 6 where equations t and 2
describe the governing nonlinear lLaws of the
Interaction. The current, |, represents the actual
trajectory of the TR-robot while the voltage, v, Is
the actual force exerted by the F-robot. Note that |
end v are vectors of & proper dimension that
represents the space in which two robots Interact.

We will first analyze the two types of
Interactions described in Sections 5.1 and 5.2,
arriving et proper multi-degree-of-freedom and
nonLinear generatization of the results obtained for
the Linear case. The analysis will then be extended to
cover other types of interactions.

6.1 Interaction of an Ideal TR-robot with
an Ideal F-robot

To simulate these ideal robots the gains (l.e.
amplification) of the operators Sy and S¢ are set to
zero. Applying the Small Gain theorem, under the
condition on S and S¢, the followling bounds on v and



are derived in Appendix B:
Hillp € xyllle (5)
vy € k2llvellp (6)

where kya8nd k are positive finite scalars defined as
the geins of Gy and G respectively. In fact, for the
ideal robots, both x; and k; ere unity. Therefore, If
the Input signals I, and v, are assumed to be bounded
In the sense thet they belong to the L, space, then v
and | will be bounded and they will also belong to the
Lp space. Moreover, It Is shown In Appendix B that the
mappings (lo,Vo)—I and [lo,v,)—v are Llinearly
bounded in the sense of Definition 5 of Appendix A.
Thus the system shown in Figure 6 Is Lp-stable. Note
that this Is the same result as the one obtained In the
linear case.

A physical Interpretation of this result can be
glven If space Ly is used. (The norm of a signal that

belongs to the L, space represents the energy of the

signall. If the input signals are assumed to be of finite
energy, then the power exchange during the
interaction Is always finite and bounded by the
product of the energy of the Input signals.

6.2 Interaction of an Ideal TR-robot with
a Weak F-robot

In the Linear case we modeled & weak F-robot
by letting the value of R¢ tend to Infinity. This idea
can be extended to the operator domaln by assuming
that S¢ is not en L,-stable operator. To state the Lp
instability of S¢, any condition required for the Lp
stability can be violated [see Appendix A Definition 5).
We assume that the operator S Is not L,-steble in tl:we
sense that it can not be Linearly bounded although it
mey map L"e—L" 8nd L"p—L",. Note that this Is &
realistic assumption to model the nature of S¢ for this
class of robots. The phgslcatglnterpretatlon of this
assumption Is as follows: linearly Increasing
displacements applied at the end-point of the F-robot
generate contact forces that can not be linearty
bounded. This definition Implies the characteristics of

8 poor force control robot that Is very sensitive to
the trajectory disturbances. A similar definition can

be glven for a weak tracking robot. The operator S,
for a weak tracking robot Is not Lp-steble In the
sénse that it can not be Linearly bounded although It
may mep LPe—L",e 8and L",—L",. The definition
implLies that the Linearly Increasing force

disturbances applied at the end-point of the TR-robot
generate a trajectory that cannot be Linearty
bounded. [A poor tracking system that responds to
the disturbances very well.)

In Appendix C, It Is proven that under the
conditions assumed for the operator Sr, the system
on Flgure 6 Is not Ly-stable in the sense that the
system can not be Linearly bounded. This Instabllity
result confirms the Instability resutt which was
obtalned In the Linear case.

7. Other Types of Interactions Between
Robots

So far, we have analyzed the interaction of two
active systems when these take the form of an ideal
TR-robot with an Ideal F-robot or, an Ideal TR-robot
with a weak F-robot. However, the Interactions of
two robots are not constrained to be in these two
forms. We have chosen these two types of
interactions because the enslysis of other types of
Interactions are similar to those already -considered
In Sections 6.1 and 6.2. The following table
summarizes the possible Interactions between two
robots.

Ideal Average Weak
Tracking Tracking Tracking
Robot Robot Robot
Ideal
Force Stable Stable Unstable
Control
Robot
Average Stable Conditionally ?
Control Stable
Robot
Weak
Force Unstable ? ?
Control
Robot

Tablel: Interaction of Two Active Systems with Its
Assoclated Stability Property

ficcording to Table 1, there sre three cases of
Interactions between two robots that always Lead to
stable interactions. The one that combines an ideal
tracking robot with an Ideal force control robot has
been analyzed in Sections 5.1 and 6.1 The
Lp-stablility of the other two case (average force



control robot and an Iideal tracking robot, an
average tracking robot and an ideal force control
robot) can be shown by Inspection of Inequalities B9
and B10 In Appendix B. If the gains of the operators
Si+ and S¢ are finite and thelr product is Less than t,
then the L -stability of the Interaction Is guaranteed;
If the product Is greater than 1, then nothing can be
sald sbout the stability of the Interaction. For these
types of Interactions, either the gain of S¢ Is finite
and that of S Is set to zero or the gain of S is
finite and that of S¢ set to zero. The fact that at Least
one of the operators' gain Is set to zero guarantees

that the product of the gains of Sf and Sy Is Less than
1

There are two categories of Interactions that
Ly-stablility can be guaranteed (an idesl tracking
robot and a8 weak force control robot, an ideal force
control robot and & weak tracking robot). The
Lp-instability of these two ceses cen be shown by
inspection of inequalities E8 of Appendix C. The
product of these gains Is zero, since one of them Is
zero. The end point trajectory or the contact force is
not Linearly bounded by the norm of the inputs. For
examptle, If the gain of Sy Is zero and the gain of 5¢
Is nontinealry bounded, the contact force will be
nonlinearly bounded. On the other hand, If the gain of
S¢ Is zero and the galn of Sy Is nonlinearly bounded,
then the trajectory will be nonlinearly bounded by
the norms of the inputs.

Table 1 shows one case in which the stability
status of the interaction between the two robots does
not have a categorical answer (i.e. unstable or
stable). This case refers to the interaction of an
average tracking robot with an average force
control robot. The stablility depends on the
particular characteristics of each of the robots.
Inequalities B9 and B10 of Appendix B give a sufficient
condition for the stability of the interaction. If the
product of the gains of the operators Sy and S¢ Is
less than 1, then the L -stability of the interaction Is
guaranteed; If the product Is greater than 1, then
nothing can be said about the stability of the
Interaction.

There ere three case in the table that are
represented by "?". In sll these cases one or both
systems are unstable operators. There is no general
theorem that gives conditions for Ly-stability {or
Lp-instability) for these cases. Note that k3 x4 can

be greater than 1 and thus one cannot arrive at
inequality B9 and B10 for stability analysis. The most
recent result on siablthU anslysis of the closed Loop
systems is given in reference (16). This reference
glves Instability condition when one of the system is
linear, time Invariant and unstable while the other
one Is nontinesar, time varying and Ly-stable. If both
systems are nonlinear time veariant, then nothing can
be sald about the stability status of their interaction.

8. Conclusion

The most stable Interaction occurs between an
Idesl tracking robot and ideal force control robot. An
average tracking robot and an average force
control robot behave as Idesl robots when working
inside thelr bandwidth. During manlpulation, the
tracking robot will take care of the trajectory while
the force control robot will take care of the
Interacting force [(the two robot physically
complement each other). Note that no externasl
control architecture Is needed to accommodate the
force developed during the Interaction [i.e. modulate
the Impedance of the tracking robot). An environment
can be modeled by & force control robot with a zero
input commend. Since & force control robot with zero
Input command cen no Longer fulfill the task of
accommodating the interaction force, therefore some
compliance must be developed for the tracking robot
for stability.
Appendix A

Definitions 1 to 7 will be used in the stability
proof of the closed-loop system (17,18,19).

Definition I: For all pe [1,0), we Label as L% the set
consisting of all functions f=[f,fp,...,f,)7: [0,00)—R"
such that: )

J16[P dt <coo for 1, 2, .n
0

Definition 2: For all T&[0, o), the function fy defined
by:
f otT

fr -
0 Tct

Is called the truncation of f to the Iinterval [0,T]



Definition 3: The set of all functions f=(fy,f5,...,f,)T:
(0,00¢) —R" such that frel”, for all finite T Is
denoted by L",. f by Itself may or may not belong
to L",.

Definition 4: The norm on L," Is defined by:
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It el Ifp2
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where || f; ||, is defined es:
oo 1/p
I | P 6rlf.lp dt
Definitlon 5: Let V() L"pe— LM, We say that the

operator V(] is Ly-stable, If:
e) VL)L — Lo"

b} there exist finite real constants a4 and g4 such
that:

Hvie) llp<aqllell, + g4 v eel",

According to this definition we first assume that
the operator maps L",, to L"pe. It Is clear that If one
does not show that V[ )Ly~ L, the satisfaction
of condition [a) Is Impossible since L"ye contains L7,
Once the mapping, VI[.), from L"pe to LR, Is
established, then we say that the operator V() Is
Lp-stable If, whenever the Input belongs to L%, the
resulting output belong belongs to L". Moreover the
norm of the output Is no Larger then a4 times the
norm of the input plus the offset constant Bg.

Definition 6: The smallest a4 SUCh that there exist a
B4 SO thet Inequality b of Definition 5 is satisfled Is
called the gain of the operator V{.).

Definition ?: Let V[):L" o~ L"%e The operator V(.
is sald to be causal if:

Vielr= Viey) Vv Tc¢oo and

prendlx B

The objective Is to prove the L,-stability of the
system glven by equations 1 and 2 when the gains of
Sy and S¢ are set to zero. It is assumed that the
operators Gy, G¢, S, 8Nd S¢ ore Lp-stable eand
causal. These two assumptions on each of the
operators guarantee the existence of finite constants

v eeL",,

K1, K2, K3, K4,€ R* and &, &,, 63, 84,€R such that
the following inequallties are true. (2)

Il Gy Ugdr lp € koIl lor ll, + & (81
Il G (Vo ”p { K2 ”VoT”p + 6o B2}
I Sy [V]T”p < k3l VT“p + &3 {B3)
s 0)vlly € rallix Hp + 84 (B4)

where TeR*.

Broof: First we show that whenever I, and Vo belong
to L"pe then v and | belong to L",, under the Limiting
condition on kz and k4. It is clear that If | and veto
L"pe whenever i, and Vo€L"e and k3 end x4 8re set

to zero, then | and v&L", either and the system of
equations 1 end 2 will not be L,-stable. The truth of

equality BS for any finite T can be observed from
Figure 8.

b =Gy lig)r + S v )y ~ [BS)
Hence we have:

Wil € I Gy Uodrllp+ Il Sy (v )rll,  (BS6)
Using Inequslities B1 and B3, Inequality B? is true.
Wirllp € &1 liorllp+ kallvell g+ 64+ 85  (B?)
SimiLerty, one can arrive at a bound for P-norm of v.
Wvrllp ¢z 1 vorllp+ ke llip e 82+ 84 (B8)

B7? and B8 result In Inequatities B9 and B10.

“ ‘T'L( [1-’(4’(3]-‘[ Kl” 'oT“p*stz ”VoT“p*

K3(62+84) +61+63) (BS)
il VT”p(“‘qu:;]'I( k2 Vo'r”p* Kak !l I°T||p¢
K4[6|+33] *52*84} (B10)

When k3 and k4 are set to zero then:
Hihlp € ki lligr il p+ 84+ 83 (B11)

Hvrllp € k2 Il ver ll g+ 82+ 84 (B12)

Inequallties B11 and B12 show that the mapping from
(1o,Vo)—(l,v) is bounded when k3 &8nd k4 are set to
Zero. Because this reasoning Is valid for every finite
T, It follows that | and veL ..

Next we show that whenever |, and v, belong
to L"; then 1 and v belong to L"; and moreover, the
mapping from (ig,v)— (i,v] Is linearly bounded in the
sense of Definition 5 [condition b) of Appendix A. The
reasoning by which Inequslities Bil and B12 were
derived still holds when I, and v, belong to L",.
Since the p-norm Is a nondecreasing function of T,



the subscript T on |, and v, cen be dropped.
Mty € kil gl o+ 84+ 63 (B13)
Wvellp € k2 ll voll p+ 82+ 64 (B14)

Since igand voelf, thenllifll, andll v¢ll, In
inequellitles B13 end B14 are bounded by fixed resl
numbers. Therefore | and vel",. Taking the Limit
values on both sides of inequallities B13 and B14 when
T—oo It is clesar that:

Hillp € killlpll g+ 84+ 63 (B12)

” V”p ( KZ ” Vo”p+62+64 [314]

which proves the linear boundedness of the of the
mapping [y,ve)—I{I,v]. This shows the L, stabliity of
the mapping (l,,vo)—I[l,v] defined by equations 1 ana
2 under the assumptions of the theorem.
Appendix C

The objective Is to prove how the Lp-stability
can not be guaranteed for the system represented by
equations 1 and 2 when the operstor S is not
L,-stable but causal end the operators Gy, G¢, and
Str ore L,-stable and causal. It Is assumed that the
operator S¢:L"pe—L", 8nd whenever the input
belongs to L", the output belongs to L", stso.
Moreover, the operator S¢ is assumed to be
nonuniformly Linearly bounded in the sense that
there exiIst & finite scalar k4(TIER*, and a 64, R
such that:

Sf [I ]T”p ( K4[T] ” IT“ p + 64 [C”

Note that the operator S is not L,-stable since there
Is no fixed real constant x4 that Linearly bounds the
meppling Sr. Since the operators Gy, G¢, 8Nd, Sy are
Lp stable and caussl, there exist finite constants k;,
K2, k3,€ R* and &y, 62, §3,€R such that the following
Inequallities are true. (2]

” Gt “o] ]T“ p ( K1 “ IoT ”p + al [CZ]
” Gf (vol ]T”p ( KZ ” VoT“p + 62 [C3]
Il S (v) ]T”p ¢ K3|| V'r“p + &3 {C4)

where TeR*

Proof: Considering the system In figure 6 the
following equation can be written:

vt = Gf [voly + Sell)y (C5)

Using the same reasoning as In Appendix B, the
following Inequality can be derived,

” VTIL(["KQ[T)KS)_l(Kz“voTIIp+xq[T] K|”|°T||p+
Kk4{T)E 1+ 83)+ 65,2+ 64) [C6)

Defining k[T) eas:

k(T) = max { k2, ka4(T) Ky} (c?)

inequslity C6 can be written as

" VT“p(“‘K4[T]K3]—1{K[T] [”IoT“p* ”VQTIL)) +
K4(T][51+63]+82 +84} (c8)

Let's analyze the mapping [i,,Vol—v. From
Inequality C8 It is clear that whenever i, and Vo €L
then veL®,e. We now show that If |, and v & L", then
velL", elso. Since |, and v,eL",, the value of
Hicllp+llvelly, and consequently that of
gt llp+llverll are bounded. Moreover, for glven
lo 8Nd v,, the values of k4(T)} and k(T) are finite
since S¢: L";— L",. Thus, for s given |, and v,, the
bound of |lvtll, in C8 Is finite for any finite value of
T. This Implies that the mapping (ly,vcJ—V goes form
L" to L";. However, this mapping Is not Linearly
bounded In the sense of definition 5 (condition b) of
Appendix A because there Is no fixed real constant x
that could possibly bound the mapping (lo,vl—V.
Hence, the system In Figure 6 Is not L,-stable under
the conditions of the theorem.
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